
OS Security and Trust

Raj Kane
3/14/22

Topics
 What is OS security? Trusted computing?
 Reference monitor and access control
 TPMs
 Digital signatures and attestation

OS Security Properties
CIA properties [5]:
 Confidentiality: "preserving authorized restrictions on access and disclosure, including

means for protecting personal privacy and proprietary information"
 Integrity: "guarding against improper information modification or destruction, and

includes ensuring information nonrepudiation and authenticity"
 Availability: "ensuring timely and reliable access to and use of information"

Authenticity: "property that data originated from its purported source" -- [4]

Nonrepudiation: "Assurance that the sender of information is provided with proof of delivery
and the recipient is provided with proof of the sender’s identity, so neither can later deny
having processed the information." -- [7]

Additional definitions at https://csrc.nist.gov/glossary

https://csrc.nist.gov/glossary

Is a Truly Secure OS Possible?
Extremely challenging in practice.
 Rise of software complexity
 Inertia in updating one's system
 Confinement cannot prevent covert channels

Client Server Collab

System

Sensitive data Cov. channel

Trust in a System
Systems should behave as expected by enforcing their security
policies. Trusted components are a prerequisite for security.

Trusted components may themselves be vulnerable. How can
we verify that the trust placed in them is justified, so that the
system is not jeopardized?

Can we limit the amount of trust needed?

Trusted Component
"a trusted system or component is defined as one
whose failure can break the security policy; and a
trustworthy system or component is defined as
one that will not fail." -- Orange Book [1]

"A trusted system or component is one that
behaves in the expected manner for a particular
purpose." -- Trusted Computing Group

Trusted Computing Group

And more...

"Through open standards and specifications, Trusted Computing Group (TCG)
enables secure computing."

"Virtually all enterprise PCs, many servers and embedded systems include the
TPM; while networking equipment, drives and other devices and systems
deploy other TCG specifications, including self-encrypting drives and network
security specifications." -- https://trustedcomputinggroup.org/about

https://trustedcomputinggroup.org/about

Trusted Computing Base
TCB = subset of system components that have to be correct to enforce
security policies
 May include: hardware, TPM, kernel, privileged programs (e.g. SETUID

programs)

Desirable properties:
 Small
 Auditable

Reference monitor: one place to mediate all accesses to TCB

Reference Monitor
Reference monitor is an access control concept, implemented as a module
through which all accesses to the rest of the TCB are routed.
 Claim: yields correct enforcement of access control policies
 Issues: Time of Check to Time of Use (race conditions), covert channels

Subject ObjectRef
monitor

TCB
Request access
to object

Grant access
(establish session)
if approved

Ideally:
• Unbypassable:

mediates all TCB accesses
• Tamper-resistant: cannot be

sabotaged (by normal user or
adversary). If it is, there is a
fail-safe.

• Verifiable: "small enough to
be subjected to analysis and
tests" -- [1]

Reference Monitor: Concept
"In concept, the reference monitor mediates each reference made by each
program in execution by checking the proposed access against a list of
accesses authorized for that user."

"These principles...can result in integrating all of the system security controls
for a system into one hopefully small portion of the operating system"

"Because the reference monitor concept implies interpretation of each
reference made to determine the validity of the attempted access, efficient
mechanisms for this interpretation are required if the concept is to be
viable." -- Computer Security Technology Planning Study [2]

Reference Monitor: Race Conditions
Reference monitor checks to see if an action is allowed,
then allows action to be performed. Attacker needs to change
conditions after the check and before the use.

// check if user is allowed to write
to intended file
if (access("file", W_OK) != 0)
 exit(1);

// actually open /etc/passwd
f = open("file", O_WRONLY);
// overwrite passwords
write(f, buffer, sizeof(buffer));

// attacker waits for access check
// point file to /etc/passwd
symlink("/etc/passwd", "file");
// file opened

Linux Security Modules
LSM: reference monitor implementation
to enforce mandatory access control.
 Insert hooks into kernel code just

ahead of access (to deter ToCToU
exploit)

 Hook calls LSM function to allow or
deny access.
• Discretionary or mandatory access control

 AppArmor: included in Linux
kernel from 2.3.x

 SELinux: from 2.6.x
Reprinted from: Linux Security Modules: General Security
Support for the Linux Kernel [7]

Access Control List
Map object to users and actions.

grades [<100,1>, RW]→
syllabus [<100,1>, RW], [<200,2>, R]→

An ACL allows the concept of a user role. Suppose the user with UID 200 is a
student TA:
grades [<100,1>, RW], → [<200, 1>, RW]
syllabus [<100,1>, RW], [<200,2>, R]→

Easy to revoke access.

Capability List
Map user to objects and actions.

<100,1> [grades, RW], [syllabus, RW]→
<200, 2> [syllabus, R]→

Cryptographically protect from user tampering:
1. Client C requests server S to create object O
2. S creates O and random check K
3. S stores K in i-node with O
4. S sends capability [S id, O #, <rights>, F(O, <rights>, K)] to C
5. C requests access by sending capability
6. S verifies request using K

Difficult to revoke access. Easy for process encapsulation.

Bell-LaPadula Model
Objects and processes (users) have security levels (unclassified, confidential,
secret, top secret)

Process at level k can:
 Read only objects at level k≤
 Write only objects at level k≥

Focus on confidentiality: no information can leak down from a higher level.

OS assigns users a level along with UID, GID.

Biba Model
Bell-Lapadula keeps secrets, but does not guarantee data
integrity. Biba is the reverse.

Process at level k can:
 Write only objects at level k≤
 Read only objects at level k≥

In practice, we have mixes of discretionary/mandatory access
control and BLP/Biba.

Trusted Platform Module
How do we store cryptographic keys on a system that
may not be secure?

Trusted Platform Module (TPM)
 Secure cryptoprocessor with integrated keys
 Encrypts keys and provides attestation of host

state

Components:
§ Non-volatile storage (integrated keys)
§ ≥ 16 20-byte PCRs (Platform Config Registers) to

store integrity metrics
§ Crypto engine (RSA, SHA, RNG, signatures, …)
§ ... https://pcworld.com/article/394765/what-is-a

-tpm-where-do-i-find-it-and-turn-it-on.html

Platform
Config

Registers

I/O

Non-volatile
storage

Crypto
Engine

Attestation
Identity

Key

...

https://pcworld.com/article/394765/what-is-a-tpm-where-do-i-find-it-and-turn-it-on.html%E2%80%8B
https://pcworld.com/article/394765/what-is-a-tpm-where-do-i-find-it-and-turn-it-on.html%E2%80%8B

Non-volatile storage

TPM Keys
Storage Root Key (SRK)
 RSA key-pair
 Encrypts external keys (sealing)

• Root of Trust for Storage
 Decryption only if PCR values match

Endorsement Key (EK)
 Unique RSA key-pair
 EKsec must never be disclosed
 Signed EKpub proves TPM genuine for attestation

Attestation Identity Key(s) (AIK)
 Alias of EKsec

 Used to sign PCR values for attestation
 Loaded into volatile storage

SRK

EK

PCR Specification
PCR Use Notes

PCR0 Core System Firmware executable code (aka
Firmware) May change if you upgrade your UEFI

PCR1 Core System Firmware data (aka UEFI settings)

PCR2 Extended or pluggable executable code

PCR3 Extended or pluggable firmware data Set during Boot Device Select UEFI boot phase

PCR4 Boot Manager Code and Boot Attempts Measures the boot manager and the devices that
the firmware tried to boot from

PCR5 Boot Manager Configuration and Data Can measure configuration of boot loaders; includes
the GPT Partition Table

PCR6 Resume from S4 and S5 Power State Events

PCR7 Secure Boot State

PCR8 Hash of the kernel command line Supported by grub and systemd-boot

PCR 9 Hash of the initrd Scheduled for linux v5.17

PCR10 Reserved for Future Use

PCR11 BitLocker Access Control

PCR12 Data events and highly volatile events

PCR13 Boot Module Details

PCR14 Boot Authorities

PCR 15 to 23 Reserved for Future Use
https://wiki.archlinux.org/title/Trusted_Platform_Module

https://lists.gnu.org/archive/html/grub-devel/2017-07/msg00003.html
https://github.com/systemd/systemd/pull/2587
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f046fff8bc4c
https://wiki.archlinux.org/title/Trusted_Platform_Module%E2%80%8B

TPM Specifications
TPM 1.2:
 RSA, AES-128, SHA-1 required
 One key (storage)
 Discrete chip

TPM 2.0:
 RSA, SHA-1, SHA-256, ECC, AES-128 required
 Multiple keys for storage and endorsement
 Discrete, firmware, hypervisor

https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/tpm-recommendations

https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/tpm-recommendations

Attestation Integrity Measure

Measure system configuration at load-time of each stage.

API: Extend(n || digest): PCRn ← SHA(PCRn || digest)
Extend(n || <BIOS code>); Extend(n || <GRUB code>); ...

Key unsealed by
1. first checking that the PCRs (states) match
2. then decrypting the sealed key

Reset BIOS MBR OS App

TPM

Measure and extend

Load

 KeyGen() (→ sec, pub)
 σ Sign← sec(msg)
 Verifypub(msg, σ) 0/1→

Certificate binds a party to a public key.
 Allows nonrepudiation
 An initial trusted party (CA) securely distributes its public key
 Subsequent signature forms a proof via certificate chain
 Trust Alicepub because we have certBob Alice→ , Bobpub, certCharlie Bob→ and we inherently trust Charlie

TPM 2.0 supports ECDSA, ECSchnorr, ECDAA

Digital Signatures

}

Code Signing

Internet

App App

Vendor (signer) User (verifier)

KeyGen() → (sec, pub)
σ ← Signsec(H(App))
• Encryptsec(H(App))

H1 = H(App)
Verifypub(H1, σ)
• H2 = Decryptpub(σ)
• Accept if H1 == H2

Is it the
same
app?

Upload Download

Attestation Protocol
1. Verifier sends challenge on

application A
2. TPM extends PCR values with hash

H of host state (incl. A)
3. TPM obtains C1 = certCA TPM→ (AIKpub)
4. TPM signs C2 = certTPM A→ (H) with AIKsec

5. Host sends C1, C2

6. Verification of certificate chain
7. Verifier checks H

TPM
3, 4

App A

Verifier
6 DB

1 5

7

Host

2

ECDSA: Elliptic Curves
Curve over a finite field with points satisfying

y2 = x3 + ax + b

Discrete logarithm problem:
 Given base point B and point P
 Infeasible to find c s.t. P = c * B
 For N-bit security, use field of order 22N

y2 = x3 - x + 1

ECDSA Signing
Alice wants to sign some message m. She does the following:
 Generates integer sec
 Sets pub = sec * G

• G is a generator of (large) prime order subgroup
 Generates an integer nonce k
 Sets r = (k * pub)x

 Sets s = k-1(H(m) + r * sec)

Signature = (r, s)
Nonce must be secret and unique. Otherwise it reveals sec

Timing Leakage ("TPM-Fail")

https://usenix.org/system/files/sec20-moghimi-tpm.
pdf

https://usenix.org/system/files/sec20-moghimi-tpm.pdf%E2%80%8B
https://usenix.org/system/files/sec20-moghimi-tpm.pdf%E2%80%8B

TPM-Fail: CVEs
CVE-2019-11090: "Cryptographic timing conditions in the

subsystem for Intel(R) PTT ... may allow an unauthenticated
user to potentially enable information disclosure via network
access."

CVE-2019-16863: "STMicroelectronics ST33TPHF2ESPI TPM
devices before 2019-09-12 allow attackers to extract the
ECDSA private key via a side-channel timing attack because
ECDSA scalar multiplication is mishandled, aka TPM-FAIL."

TPM-Fail: Attack Phases
Phase 1 (generate profile):
 Attacker generates signatures and records timing information.
 Recovers nonces using known keys to find timing/nonce correlation.

Phase 2 (mount attack):
 Collects signatures (ri, si) and timing samples ti from vulnerable TPM

implementation.
 Filters collected data, keeping signatures where bias in nonce ki fits profile

Phase 3 (recover key):
 Recovers sec using lattice technique
• LLL algorithm

TPM-Fail: ECDSA Nonce Leakage

Execution time leaks nonce information.
• 0 MSWs have faster execution time
• Intel PTT nonces have 4-bit MSW.
• Nonce is useful to extract sec.

Computing scalar multiplication for r value
in signature proceeds window by window
over nonce bits. Most significant window
(MSW) bits are related to signature
execution time.

TPM-Fail: Lattice Cryptanalysis
si = ki

-1(H(mi) + d * ri) mod n → ki – si
-1 * ri * d – si

-1 * H(mi) = 0 mod n
 → ki + Ai * d + Bi = 0 mod n

Let K ≥ ki [Boneh and Venkatesan, 1996]
Shortest Vector Problem: find (k1, k2, …, kt, K/n, K), hence d

LLL

References
[1] 5200.28-STD, DoD. 1985. Trusted Computer System Evaluation Criteria. Dod Computer Security Center.
[2] Anderson, James P. 1972. “Computer Security Technology Planning Study.” Vol. 2. U.S. Air Force Electronic Systems Division.
[3] Chen, Liqun. 2005. “Direct Anonymous Attestation (DAA).” Trusted Systems Laboratory, Hewlett Packard Laboratories,

Bristol; https://trustedcomputinggroup.org/wp-content/uploads/051012_DAA-slides.pdf.
[4] Dworkin, M. 2016. "Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication, Special

Publication (NIST SP)." National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-38B.
[5] House of Representatives, Congress. "44 U.S.C. 3542 - Definitions". Government. U.S. Government Publishing Office,

December 30, 2011.
https://www.govinfo.gov/app/details/USCODE-2011-title44/USCODE-2011-title44-chap35-subchapIII-sec3542.

[6] Moghimi, Daniel, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger. 2019. “TPM-FAIL: TPM Meets Timing and Lattice
Attacks.” CoRR abs/1911.05673.

[7] NIST, and Emmanuel Aroms. 2012. NIST Special Publication 800-18 Revision 1 Guide for Developing Security
Plans for Federal Information Systems. CreateSpace
[8] Tanenbaum, Andrew Stuart, and Herbert Bos. 2015. Modern Operating Systems. Edited by Tracy Johnson. Fourth. Pearson.
[9] Wright, Chris, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-Hartman. 2002. “Linux Security Modules:

General Security Support for the Linux Kernel.” In USENIX Security Symposium, edited by Dan Boneh, 17–31. USENIX.

https://trustedcomputinggroup.org/wp-content/uploads/051012_DAA-slides.pdf
https://doi.org/10.6028/NIST.SP.800-38B
https://www.govinfo.gov/app/details/USCODE-2011-title44/USCODE-2011-title44-chap35-subchapIII-sec3542

	OS Security and Trust
	Topics
	OS Security Properties
	Is a Truly Secure OS Possible?
	Trust in a System
	Trusted Component
	Trusted Computing Group
	Trusted Computing Base
	Reference Monitor
	Reference Monitor: Concept
	Reference Monitor: Race Conditions
	Linux Security Modules
	Access Control List
	Capability List
	Bell-LaPadula Model
	Biba Model
	Trusted Platform Module
	TPM Keys
	PCR Specification
	TPM Specifications
	Attestation Integrity Measure
	Digital Signatures
	Code Signing
	Attestation Protocol
	ECDSA: Elliptic Curves
	ECDSA Signing
	Timing Leakage ("TPM-Fail")
	TPM-Fail: CVEs
	TPM-Fail: Attack Phases
	TPM-Fail: ECDSA Nonce Leakage
	TPM-Fail: Lattice Cryptanalysis
	References

